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Abstract: Multimodal authentication offers the possibility of improvement in security and accuracy compared to single-
modality authentication. Currently implemented approaches relying on facial identification alone are vulnerable to presentation 
and replay attacks. We propose a multimodal authentication system that utilizes facial recognition, automatic speech 
verification and recognition, and a comparison of the audio signal to face movement. This system demonstrates resilience 
against presentation and replay attacks by requiring a new, randomly generated password for each authentication attempt as 
well as facial verification, password recognition, voice verification, and synthetic media detection, which together prevent a 
video-only or audio-only presentation or replay attack. Using the GRID audio-visual speech corpus, we find that this system 
provides improved security against these types of attacks.  
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1. Introduction 
 
Authentication can be accomplished with three different factors: something you know, something you have, or 

something you are. Something you know refers to knowledge-based authentication, such as passwords, PINs, or security 
questions. Something you have refers to possession-based authentication, such as a physical token, smart card, or mobile device. 
Something you are refers to biometric authentication, which includes unique physical or behavioral traits such as fingerprints, 
facial recognition, iris scans, or voice recognition. Combinations of these factors are commonly used in multi-factor 
authentication to enhance the security of systems and accounts. In this paper we will demonstrate the concept of multimodal 
authentication to enhance security for biometric authentication by combining different modes of biometric data. We will train 
a prototype authentication system on three modes of authentication: facial identification (FID), automatic speech verification 
(ASV), and automatic speech recognition (ASR). We propose a fourth modality to detect synthetic media by computing a 
similarity metric between the lip movements of the user and the audio of the user's authentication sample. We combine the 
outputs of these modules using logistic regression to reach an accept/reject decision for a collection of video samples. For all 
these modes we incorporate pretrained, open-source models to varying degrees to decrease the training time and computational 
expense of the system.  

 
1.1 Literature Review 

 
Facial recognition. Facial recognition and identification necessitate converting an image into a numeric encoding of 

facial geometry. These encodings can be compared numerically to a known facial geometry to determine whether the faces 
match. Modern approaches generally utilize recurrent neural networks to convert an image into an encoding, achieving human-
level performance, or above 98% accuracy (Taigman et al., 2014) on the Labeled Faces in the Wild dataset, which is considered 
the benchmark dataset for FID. More recent research has focused on improving loss functions and training methods (Deng et 
al., 2022). 

Speech recognition. The wav2vec automatic speech recognition (ASR) system used in this paper utilizes self-
supervised learning to develop a numerical representation of an audio signal of speech (Baevski et al., 2020). This system is 
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trained on a large body of unlabeled speech data. During the self-supervised phase, the model learns to estimate future audio 
samples from preceding ones, enabling it to capture meaningful speech representations. Using a comparatively small amount 
of labeled data, a quantization model converts these representations learned on the unlabeled data to a vector of words with a 
word error rate (Klakow & Peters, 2002) of 1.8/3.3 on the Librispeech dataset (Panayotov et al., 2015). This approach is flexible 
for different languages and makes very efficient use of labeled data.  

Audio-visual speech recognition. Recent innovations in ASR demonstrate that including video data can improve the 
accuracy of speech-to-text models, especially in environments where the audio signal is noisy or there are multiple, 
simultaneous speakers. There are generally two approaches which demonstrate this result: either analyzing audio and video 
components separately and combining the processed outputs into a single prediction of the spoken words (Afouras et al., 2022) 
or combining the audio and video into a single input vector before processing (Chao et al., 2016). When analyzing components 
separately, some approaches use the video signal to determine which parts of the audio signal belong to a given speaker by 
analyzing lip movements (Yu et al., 2020). Both approaches demonstrate significant reductions in word error rate compared to 
audio-only ASR in clean and noisy environments.  

Automatic speech verification uses audio data to determine the speaker’s identity. Deep learning models can be 
applied to preprocessed acoustic characteristics, the raw audio signal itself, or to speech representations learned through self-
supervised models as seen with the wav2vec ASR model (Chen et al., 2022). A key difference from facial recognition is that 
audio data is presented as time-series data, so different model architectures such as time-delay neural networks are used 
(Desplanques et al., 2020). In some approaches, the audio signal is first converted into a spectrogram so that image analysis 
techniques can be applied (Park et al., 2019).   

Lip-Based Biometric Authentication (LBBA). Our work shares similarities with lip-based biometric authentication 
(Koch & Grbić, 2024). This method utilizes a region of interest (ROI) centered around the lips of a user as input, processing it 
as a raw video signal to determine if two samples originate from the same speaker uttering the same phrase. This approach 
serves to authenticate a speaker using a predetermined password. Notably, their method distinguishes between error types, such 
as misidentifying the speaker or misinterpreting the spoken phrase, achieving false acceptance and false rejection rates of less 
than 4% on the GRID dataset. We intend to expand upon their methodology by incorporating multiple modalities, thus 
addressing a broader range of security vulnerabilities. Our approach differs from theirs in that we use a random password used 
only once rather than a predetermined password. We also use ASR to determine whether the password was said, and then we 
use FID and ASV to determine whether the correct person is speaking that password.  

 
 

2. Methods 
 

Our proposed system is initialized with several video samples from each speaker in our dataset, which are used to 
compute encodings for face and voice identification. In our proposed application, each user would be prompted to speak a 
randomly generated password. This generates a video sample which would be compared using FID, ASV, and ASR to an 
authorized user database and the prompted password. An overview of our approach is shown in Figure 1.  

 
2.1 Data 
 

We use the GRID dataset for training and validating all components of the authentication pipeline. This dataset 
consists of video recordings of 34 speakers with 1000 sentences per speaker. All sentences are six syllables long and 
syntactically identical, of the form “place green at B 4 now” (Cooke et al., 2006). For one speaker, only audio is available and 
is not usable for this project. Of the 33 speakers for which there is usable video data, 18 are male and 15 are female. The video 
recordings are 3 seconds long with 75 frames of video and 48000 samples of single channel audio; a transcript of the spoken 
sentence is attached to each video sample. While this dataset allows us to illustrate multimodal authentication using a 
straightforward, noise-free, and demographically homogeneous dataset, it also constrains the applicability of any system trained 
on it. Our results thus serve as an estimation of the upper bound of our system's effectiveness. 
 
2.2 Facial Recognition 
 

For every authorized user in the dataset, we initialize the facial recognition module with five images of the user, taken 
at random from the videos in the dataset. These videos are excluded from later training data. We encode each image using 
FaceNet-512 encoding (Schroff et al., 2015), which results in a vector of length 512 for each image. To compare this encoding 
with a video input, we take the encoding of the face in each frame of the video sample. We compare encodings from the input 
video frames to the encodings obtained during initialization by computing the mean cosine similarity.  
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Figure 1: System Overview.  The authentication system prompts the user to read a randomly generated passphrase and then 
evaluates the recorded video for face and voice identification, passphrase similarity, and audio/video compatibility. 
 
 
2.3 Password Verification 
 

To determine whether the user’s video matches the prompted password, we compare the wav2vec transcript of the 
video to the password (Baevski et al., 2020). Since there are multiple ways in which a similar audio signal could be transcribed 
(e.g., maybe vs. may be vs. May bee), we utilize the double metaphone algorithm (Philips, 2000) to transcribe both the password 
and the video transcript to a common phonetic alphabet (metaphones). We measure the similarity between the password and 
the input metaphones using edit distance, Jaccard similarity, and cosine similarity.    

We use a normalization of the Levenshtein distance (edit distance) metric, which is defined as the number of one-
character deletions, insertions, and substitutions required to transform one string into another string. We normalize by dividing 
the edit distance by the length of the longer string to obtain a value in the range [0,1] with 1 representing identical strings and 
0 representing two strings with no common characters (Yujian & Bo, 2007).   

We then compute Jaccard similarity (Niwattanakul et al., 2013) by dividing the size of the intersection of the two sets 
of metaphones by the size of the union of the two sets of metaphones. This method does not account for the position of 
characters in the set; thus, anagrams have a Jaccard similarity of 1.   

Finally, we also compute the cosine similarity between the metaphone transcriptions of the password and the input 
video. Both metaphone strings are vectorized using the frequency of metaphones (Wu et al., 2010) in the union of sets of the 
metaphones (bag-of-words model). We take the cosine similarity between these representations.    

To make a probabilistic determination of password match, we fit a logistic regression using the above similarity 
metrics as explanatory variables. We fit this model on a dataset of password matches and non-matches. The non-matches in the 
logistic regression training data are generated by randomly choosing a password and a spoken phrase from the passwords in 
the GRID dataset.   
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2.4 Speaker Verification 
 

For every authorized user in the dataset, we initialize the facial recognition module with five video samples of the 
user, corresponding to the images which were used to initialize the facial recognition module; these videos are excluded from 
later training data. We use a pretrained, open-source model from SpeechBrain for speaker verification (Ravanelli et al., 
2020/2024). We use an ECAPA-TDNN model (Emphasized Channel Attention, Position-Aware Temporal Convolutional 
Neural Network) (Desplanques et al., 2020) that was trained on the VoxCeleb dataset (Nagrani et al., 2017). The system 
produces an encoding for each speaker corresponding to characteristics of speech such as intonation, pitch, and tempo. We 
calculate an overall similarity metric based on cosine similarity.  

 
2.5 Audio-Video Comparison 
 

We implement a simple check to determine whether a video matches its accompanying audio signal. For every frame 
of video, we extract a mediapipe representation of facial landmarks (Savin et al., 2021); this method creates a numerical 
representation of facial geometry, with every number corresponding to the relative position of a certain facial feature. We use 
an autoencoder to reduce the dimensionality of the lip-position portion of this representation to a single scalar for a frame of 
video. This encoding is generally on the range (-0.3, 0.3) with lower encoded values corresponding to a more closed-lip 
position.  

Next, we train a linear feed-forward neural network to predict the lip position encoding using the audio signal of a 
frame of video as input. To determine whether a video is “live” (i.e., the audio and video signal align), we compare the vector 
of encodings of the video frames and the vector of encodings of the audio signal and take the mean squared error (MSE) of 
these vectors. Generally, these MSEs are in the range (0, 0.1), with larger MSEs corresponding to a higher probability of 
samples where the video and audio are from different samples.  

 
2.6 Decision 
 

To reach an accept/reject decision for each video sample, we use a logistic regression with the similarity scores from 
each modality as input. For similarity scores on the range (0,1), we can interpret the magnitude of the fitted coefficient for each 
modality as the importance of that modality. We fit the logistic regression on a training dataset sampled from a balanced dataset 
of control, replay, impersonation, and presentation samples, and it is important to note that these coefficients are dependent on 
the composition of the training set. For an application, it is therefore imperative that the training set is representative of the 
attacks which the application is expected to face. Our training dataset is likely not ideal for an implemented system since it 
seems unrealistic that any authentication system would face more attacks than legitimate authentication attempts and that these 
attacks would be balanced across several attack types; we are merely trying to demonstrate that a multimodal authentication 
system can provide security against these attacks.  

The ease of interpretation of logistic regression coefficients helps an end user appropriately adjust the settings of the 
decision function; for example, if the system administrator believes that face presentation or replay attacks are unlikely, they 
might increase the importance of the facial identification module since this module’s output is likely to correspond to the correct 
decision. In general, a multiple logistic regression, which combines the effects of the modality similarities, is desired since a 
low similarity score in any one modality will likely result in a rejection decision. This characteristic of the decision function 
provides security against attacks which appear legitimate in all but one modality. The ability to add terms for additional 
modalities is another advantage of logistic regression.  In practice, this means that other authentication modalities with 
probabilistic outputs could be added to such a multimodal system (e.g., fingerprinting or retinal scans).  
 
2.7 Evaluation 
 

To test the system, we created four types of video samples, shown in Table 1. The first is a control sample, which is a 
sample that should be authenticated because the password, face, and voice match the authorized user. The second is an 
impersonation where a person claims to be authorized user but is not and speaks the prompted password; in this case, the 
password matches while the face and voice do not. To generate an impersonation sample, we start with a video and choose a 
different authorized user at random from the dataset. The third type of sample is a replay attack in which an old video of an 
authorized user is played during which the user is unlikely to state the correct password; we generate this sample by taking a 
video and testing it against a password taken at random from a different sample. It is possible that the randomly chosen password 
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is phonetically similar to the spoken password; this is a vulnerability that should be addressed before implementing any such 
system, for example by randomizing the length of passwords. The fourth type of sample is a presentation sample, where an old 
video of an authorized user is presented, and an unauthorized user speaks the correct password simultaneously. In this attack, 
the facial ID matches the authorized user, the voice ID does not match, the password is correct, and the audio and video are not 
aligned. To generate a sample for a presentation attack, we combine a video and a randomly chosen audio sample, and we set 
the password to be the password from the audio sample. For each video in the dataset, we generate a control sample and a 
sample of every type of attack.   
 
 

Table 1. Tested Attack Types. Video samples for each attack type combine samples from the GRID corpus. 
 

Attack Type 
Facial ID 

Match 
Voice ID 

Match 
Password 

Match 
Audio-Video 

Match 
Control Yes Yes Yes Yes 

Impersonation No No Yes Yes 
Replay Yes Yes No Yes 

Presentation Yes No Yes No 
 
 

	3. Results 
 
3.1 Password Verification 
 

Each of the password similarity metrics performs well on their own; however, each has certain limitations.  For 
example, Jaccard and cosine similarity cannot distinguish between anagrams, which is reflected in a smaller difference of 
means in Table 2. However, by leveraging the strengths of each of these similarity metrics through a logistic regression, we 
can achieve a very accurate system when comparing wav2vec generated phonetic transcripts of GRID video samples to the 
known transcripts of the same video. The results in Table 2 can be interpreted as showing that these metrics can distinguish 
between cases where the correct password is spoken vs. random sentences of the same length. 
 
Table 2.  Password Similarity Metrics.  Three metrics (edit, Jaccard, and cosine) serve as inputs to a logistic regression.  Here 
we show the mean and standard deviation of similarity scores using each password similarity metric. 

 
Metric Match  mean (SD) Non-match mean (SD) Difference of means t-statistic (p-val.) F1 Score

Edit similarity 0.911 (0.091) 0.330 (0.142) 0.581 267.89 (<0.001) 0.969
Jaccard similarity 0.951 (0.090) 0.603 (0.147) 0.348 157.76 (<0.001) 0.840
Cosine similarity 0.974 (0.040) 0.681 (0.146) 0.293 141.99 (<0.001) 0.926
Logistic regression 0.976 (0.092) 0.047 (0.142) 0.933 435.92 (<0.001) 0.972

 
3.2 System Performance 
 

All the modules were tested on modality-specific outcomes as shown in Table 3. That is, we compare the 
distributions of password, facial identification, audio identification, and audio-video comparison scores for samples where 
each modality should support authentication and samples where each modality should not support authentication (e.g., facial 
identification similarity scores where the sample shows the correct face vs. samples where the face is incorrect, etc.). 

 
Table 3.  Module Performance.  The performance of each of the four modules was evaluated by comparing mean similarities 
for matches vs. non-matches, as well as by computing an F1 score associated with modality-specific models. 
 

Module* Match  mean (SD) Non-match mean (SD) Difference of means t-statistic (p-val.) F1 Score
Password 0.976 (0.092) 0.047 (0.142) 0.933 435.92 (<0.001) 0.972
Facial Identification 0.733 (0.147) 0.192 (0.161) 0.540 204.90 (<0.001) 0.979
Audio Identification 0.739 (0.072) 0.128 (0.155) 0.612 288.35 (<0.001) 0.991
Audio-Video Comp. 0.040 (0.020) 0.060 (0.020) 0.020 28.97 (<0.001) 0.251
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(MSE of encodings) 
*Note that each of these performance comparisons is for matches and non-matches for that modality only. 

 
Although there is a statistically significant difference between the calculated MSEs of video samples where the 

audio and video signal align (see Table 3), this modality is not useful on its own to make an authentication decision as it does 
not correspond to one of the three factors of authentication. Additionally, the results of the audio-video comparison can be 
completely determined by the results of the facial identification and voice identification modules. If the outputs of these 
modules do not align (if the voice is correct but not the face, or vice versa), then the audio-video comparison should also 
return a decision not to authenticate. This module is intended to serve as a check to determine that an authentication attempt 
comes from a live individual; we can also fulfill the live-check function of the authentication system with the password 
module, since it requires a new password for every attempt. The utility of this module would come from detecting synthetic 
media (deepfakes); as we will discuss later, we believe that this function could be better accomplished by a generative 
adversarial network. Therefore, we exclude this module from our further analysis. 

As expected, the modalities which incorporate open-source, pretrained models perform very well at their intended 
tasks. Our experiment serves to combine the different modalities to provide security against attacks which exploit a weakness 
in a single-modality authentication system. As shown in Table 4, single-modality authentication systems appear vulnerable to 
various attack methods. However, by combining modality similarity scores in a logistic regression, we can achieve a 
relatively high success rate on all types of generated attacks. 

 
 

Table 4.  Attacks Tested.  The results for three attack types and the control setting show the ability of this multimodal 
authentication approach to correctly accept authorized users while correctly rejecting various types of attacks. 

 

Attack Type 
FID Only  
F1 Score 

ASV Only 
F1 Score

PWD Only 
F1 Score

System 
Accept rate

System 
Reject rate 

System F1 
Score

Control 0.468* 0.729* 0.994* 98.52% 1.48% *0.996 

Impersonation 0.998 1 0.020 0.16% 99.84% 1 

Replay 0.817 0.616 0.986 2.49% 97.51% 0.998 

Presentation 0.903 0.999 0.030 0.11% 99.89% 0.993 

 *Note that to compute the F1 scores for control samples, we re-leveled our response variable to be positive 
when the sample should be rejected.  
 
 
We hypothesize that the lower reject rate for replay attacks comes from the fact the some of the passwords in our 

dataset are similar. Therefore, there is a random chance that the replayed password is similar to the prompted passwords; in 
other words, our random-password-used-once system should be improved by making passwords less similar.  

   
 

4. Discussion 
 
4.1 Known Limitations  
 

Before implementing this kind of system for any operational purpose, each module and the combined system should 
be trained on a dataset that is representative of the population that will be interacting with the system. We trained our proof-
of-concept system on a small sample of British university students; thus, it would be inappropriate to deploy it before fine-
tuning on a general population. The training population should be representative of any potential target population in terms of 
attributes that could impact the function of any module of the final system. These attributes should certainly include sex, age, 
ethnicity, language ability, and other demographic attributes.  

The training dataset should also be representative of the expected attacks the system could face. As discussed in 
section 2.6, the composition of the training dataset will impact the final parameters of the decision function and should 
therefore be designed with the specific use case in mind. The audio and video noise levels will affect the performance of the 
individual modules, and by training these modules in the presence of real-world noise, the decision function would likely 
require less certainty from each module, leading to changes in overall performance requiring further study. Therefore, with a 
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specific use-case in mind (e.g., a physical gate at the entrance of a compound), the training dataset should be adjusted to 
reflect the expected noise levels.  

The accuracy of the audio-video comparison module is also unsatisfactory for implementation as a production 
authentication system; we discuss various methods of further addressing the problem of dealing with synthetic media 
below.  One of the most significant problems with this module is that its effectiveness differs significantly by speaker. We 
hypothesize that this difference comes from the fact that different speakers vary their lip positions to different extents when 
speaking, and therefore without finetuning on individual users, our module cannot differentiate between a speaker with small 
lip moment and a video where the audio signal and lip movement do not align.  
 
4.2 Future Directions of Research  
 

There are several alternative methods that could be used to compare the audio and video components of an input 
video. A frame-by-frame comparison between audio and video could be implemented using spectrograms instead of raw 
audio input. Considering multiple frames of audio and video would likely also result in a more accurate check.   

Comparing audio to video helps determine whether a video is synthetic or an authentic recording. A generative 
adversarial network (GAN) would likely be useful to address this problem (Aldausari et al., 2022). Methods of implementing 
a GAN might include a model which is trained to distinguish between synthetic and live videos; however, this would be 
computationally expensive and difficult to implement. A simpler GAN implementation could be used just to validate lip 
positions against an audio signal.   

Koch et al. introduce the value of hard-negative mining in their work on lip-based biometric authentication (Koch & 
Grbić, 2024). As an example of hard-negative mining, we could examine the success of the password module on samples 
where the spoken phrase is an incorrect but similar password to the prompted password. We could define a difficulty metric 
for every authentication sample and train the model on progressively more difficult samples. We could also use a GAN to 
deliberately create more difficult samples. The next iteration of this experiment should include samples that are more 
intentionally constructed rather than randomly generated.   
 
 

5. Conclusion 
 

The system outlined above demonstrates that adding authentication modalities can decrease the error rate of an 
authentication system against certain attacks. Multimodal authentication can also protect systems against attacks which might 
only appear in certain modalities; for example, a video replay attack might only be preventable by requiring a password 
module, and an image presentation attack might be prevented by a voice identification module. There are significant 
obstacles which must be overcome before implementing such a system; these obstacles vary by use case and the selected 
modalities, but at a minimum developing any system of this type requires preparing a training dataset which is 
demographically representative of the user population and contains samples that adequately represent the variety of attacks 
the system is likely to face. 

A continuing concern for authentication systems is synthetic media. We demonstrated a very rudimentary module 
for comparing lip movement to audio signal to detect synthetic media where the audio and video components do not align. 
However, more advanced synthetic media, already publicly available to some extent, will be undetectable by this method. 
Future work should extend the capabilities developed here with an emphasis on the growing threat of synthetic media. 
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