
Quality Inspection and Process Monitoring for Directed Energy Deposition 
Manufacturing Using a Cyber Physical System 

 
Patrick Imbornoni, Matthew Kirk, Damon Mertens, Christian Pena, Zimo Wang, Yu Jin, and 

Fuda Ning 
 

Department of Systems Science and Industrial Engineering 
State University of New York at Binghamton 

Binghamton, NY 13902 
 

Corresponding Author's Email: dmertens1@binghamton.edu 
 
 

Author Note: Patrick Imbornoni, Matthew Kirk, Damon Mertens, and Christian Pena are senior Industrial and Systems 
Engineering students at Binghamton University. Dr. Wang, Dr Jin, and Dr Ning are Professor in the Systems Science and 
Industrial Engineering department at Binghamton University and served as the team’s Capstone advisors. 
 
Abstract: A cyber physical system (CPS) connects multiple devices so that data can be shared between them. One such process 
a CPS can assist in optimizing is directed energy deposition (DED); an additive manufacturing technique that uses focused 
thermal energy to melt metal powder or wire as it is being deposited. During this process, a melt pool is created that can lead 
to structural defects in the object being produced. The melt pool and defects are correlated to the process parameters. By 
creating applications on the IBM Cloud, the data received from sensors and cameras (thermal and high speed) during the 
process can be stored, organized, and visualized to draw conclusions that can help to optimize the process and reduce defects. 
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1. Introduction 
 

Additive manufacturing (AM) is a manufacturing process that creates objects by joining materials together layer by 
layer in the form of a three-dimensional computer-designed object. Directed energy deposition (DED), one of the seven 
categories of AM, is a manufacturing process that simultaneously deposits a wired or powdered-based material and provides 
an energy source, usually a laser or electron beam. DED produces objects by melting materials as they are being introduced to 
the object using thermal energy (Ning, 2022).  

A Global EY Report from 2019 shows that in 2019 65% of companies surveyed have applied AM to their business, 
and another 18% are considering it. Ernst and Young report a significant increase from 2016 when only 24% of these same 
companies had applied, and 12% initiated the transformation. A more widespread understanding of the technology and its 
beneficial use cases has led to increased adaptation within businesses. The Global EY Report describes how companies can 
become more efficient, grow, and transform their business through AM. On-demand printing, smaller lot sizes, and 
customizability help create more efficient business and supply chains. AM also allows cost-effective design parts to fit unique 
customer needs better. Finally, a business adopting AM opens itself up to new markets and endless opportunities in the rapidly 
growing AM supply chain (Ernst and Young, 2019). AM is an emerging area that seeks wide applications across multiple 
fields. The development of this technology keeps progressing. 

An Internet of Things platform (IoT) creates digital data from physical objects and processes. This physical 
information is collected using data collectors such as sensors and cameras. These data collectors send digital information to 
computers that are connected to each other. The network created by these sensors and computers allows for data to be viewed 
remotely. Overall, this platform allows communication between machines and computers, allowing for the process to be 
monitored and controlled, adjusting to ensure the quality of parts and more efficient production rates (Wang, 2019).  
For AM to become a reliable tool for production, each process must be further developed and optimized to reduce part 
deformities, making the process more efficient. This research attempts to correlate process parameters for a DED process to 
the object's porosity and microstructure, which both determine the quality of the surface finish. Using sensors, Raspberry Pis, 
and the IBM Internet of Things platform, this research creates a CPS in which data collected during the manufacturing process 
is stored and visualized, allowing for interpolation of data that can be used to determine the optimal process parameters needed 
to create a quality product. 
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2. Literature Review 
 

DED manufacturing is no exception to these benefits and limitations of traditional AM processes. AM continues to be 
a popular tool for initial prototype testing. Inexpensive prototype prints verify that CAD models are correct and allow for 
physical testing.  Additive manufacturing has zero lead time, and unlimited design space, and allows for a variety of designs 
because there are no specialized molds or tools needed (Ning, 2022). Based on the nature of the process, DED can use strong, 
durable metal alloys for production such as stainless steel, titanium alloys, and aluminum alloys. This gives DED-produced 
objects better mechanical properties as compared to other AM processes. The material used in DED manufacturing can be fed 
into the machine during production which allows for larger and multi-material parts. With high initial machinery costs, slow 
production rates, limitations in production size, and quality issues, there is room for improvement in the DED process. DED-
produced parts tend to have poor object resolution and rougher surface finish which leads to each object requiring post-
production finishing (Svetlizky et al., 2021).  

DED has become a reliable tool in repair and maintenance, with many applications in the aerospace and automotive 
industries (Piscopo & Iuliano, 2022). The nature of these two industries, aerospace and automotive, necessitates that the process 
produces reliable and quality objects. Previous studies researched how each part of the DED process affects the quality and 
reliability of the object produced. A critical aspect discovered is the melt pool. The melt pool is described as the area around 
the energy source where melted metal powders form a droplet. The energy source's interaction with the melt pool as well as 
the thermal field of the object works together to determine the physical properties of the object's surface finish. Additionally, 
local temperature differences on the surface of the object can help predict the microstructure of the object. This helps determine 
the reliability of an object as defects formation and strength can be assessed. Observations using a thermal camera show how 
cooling rates can determine these thermal properties in objects (Svetlizky et al., 2021). Traverse speed, laser power, spot size, 
and other related process parameters are used to predict the thermal gradient and then thus make inferences on the surface 
finish. Thermal imaging is used to create a thermal map of the process using techniques such as edge detection and noise 
reduction algorithms. From these crevices, pores, scratches, and other physical defects can be found during printing which will 
allow for immediate fixes for these errors (Chen et al., 2020).  

Cloud manufacturing is a growing technology in which real-time sensor data of a manufacturing process can be viewed 
and analyzed anywhere with an internet connection. Decisions and adjustments can be made in real-time which helps reduce 
waste, increase efficiency, and overall optimize the process to better adapt to real-world changes currently happening (Jin, et 
al, 2020). Cloud manufacturing provides the ability to monitor the build quality, by either viewing historical data and optimizing 
process parameters or adjusting in real-time. The cloud capabilities allow for a larger amount of data to be analyzed than a local 
stored system. The cloud also allows for multiple parties to monitor and analyze the data from wherever and whenever in the 
world. An IoT platform is a relatively inexpensive way to create a network of sensors, cloud databases, and computers. The 
IoT platform allows for programs and applications to be built into the data analysis process. For example, machine learning 
and image processing code can be used to alter the process parameters if corrective action is deemed necessary at the moment 
(Zhon., 2017). 

 
 

3. Approach/methodology 
 
The proposed CPS consists of three parts, which when combined, create a quality inspection and process monitoring 

platform for the DED Process. Figure 1 provides an overview of a basic implementation of IoT by integrating the Data 
Acquisition System, Image Processing, and the IBM Cloud platform. 

The Data Acquisition System, consisting of a Raspberry Pi single-board computer and sensors collect data directly 
from the DED Process. This data is then sent to an IBM Cloud application to be processed and organized. The Image Processing 
portion of this design receives thermal camera data, analyzes the data to determine the melt pool size, and outputs this new data 
to be uploaded to the IBM Cloud. This cloud system can then be implemented in a DED process as a quality check for the 
process (Bothcha et. al., 2018.) 

The Data Acquisition system was designed to collect data directly from a DED process. To collect and process this 
data, a Raspberry Pi single-board computer serves as the main processing component. Connected to the Raspberry Pi is a 
temperature sensor to collect data, which is sent to the cloud Application and graphed in real-time. This proved the ability to 
connect our Data Acquisition System to the cloud Application. 
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Figure 1. Overview of Proposed CPS for DED process. 
 

 
Image Processing involved collecting data from a thermal imaging camera, analyzing this data, and once again 

uploading it to the cloud application. Data provided from an experiment capturing a thermal video of a similar AM process was 
used to develop and test the code for this section of the design (Miller, 2021.) The thermal camera was situated 15 cm outside 
the DED machine at a slight angle. Each frame of the captured video is read by a code written in MATLAB to find the 
temperature reading for the entire image. From this data, a colormap is created for the entire process, and the image is segmented 
by removing all points under a certain value, leaving only the melt pool. For this dataset, the specified value was 30.0. With 
this removed data, a video created shows the size and shape of the melt pool.  After this data is processed, additional graphs 
detailing the location and temperature of the hottest point of each frame are created. The completed video and two graphs make 
it possible to identify possible locations where defects may have occurred. Potential causes for errors include a significant 
change in melt pool size or shape, fluctuations in temperature, or significant movement of the maximum point in the image.  

The IBM Cloud serves as the communication center and allows the user to visualize all the collected data for a process 
and make informed decisions about the DED process. The IBM IoT application is used as it allows a direct connection to our 
Raspberry Pi data acquisition system. This connection is made through the Node-Red Application. With this connection, a 
Graphical User Interface (GUI) is created to graph the data collected from our sensors and pictures of the thermal field, collected 
from the image processing portion, at set time frames.  

The proposed platform provides an effective way to monitor the DED process for reducing quality nonconformities. 
A user looking at the IoT application can monitor and analyze the visualized sensors' input or process parameters from DED 
processes using different starting conditions, such as vibration or temperature. From here the user will be able to make decisions 
based on this data and decide which process would result in the least number of defects, which decreases overall waste for the 
process. 

 
 

4. Experimental Results and Analysis  
 

Throughout the project it was discussed what kind of sensor data would be collected during the DED process, this 
included data from thermal and high-speed cameras as well as data concerning acceleration, force, and acoustics taken from 
sensors connected to Raspberry Pi’s. One of the first objectives with this data is to organize the data received in the IBM cloud 
which allows the user to pick specific data sets for the desired run to analyze it. One way to do this would be to make a table 
that contains the sensor readings. The design is just three columns, one for each sensor. The length of this table would vary 
depending on the sampling rate, which is measured in a range between kHz and MHz meaning that the tables can be long and 
difficult to navigate. This is where the graphing comes in to help visualize the data. By being able to see the data points plotted 
out over time, a better understanding can be made of the data trends, and it can be communicated more efficiently.  
 Using the data from the different sensors, three graphs corresponding to each column’s values can be made in the IBM 
cloud to visualize the readings over the course of the DED process. These graphs receive data directly from the connected 
Raspberry Pi’s where it is accumulated and simultaneously plotted. When looking at the graphs, notes are taken on any 
irregularities or extreme fluctuations in the graph that indicate possible disturbances in the process that could correlate to 
structural defects in the finished product. Data collected can be graphed simultaneously on the IBM cloud, the y-axis indicates 
temperature while the x-axis shows the time. This instantaneous data collection allows the user to detect unusually high or low 
values that may correlate to an increase in porosity and a larger melt pool as the process is underway. 
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Figure 2. Raspberry Pi Sensor Setup (Left) and Watson IoT Dashboard (Right). 
 
 

Camera data in the form of .tiff and .hdf5 files can be read and visualized using MATLAB scripts. The thermal 
behavior of the melting pool is obtained based on the hdf5 file readings, which contains the temperature profile for each pixel 
in an image. Then a thermal map is created with the given values for the image segmentation and edge detection to extract the 
full melt pool. Figure 3 shows the result of a frame after isolating the melt pool. Next, the detailed characteristics of the melt 
pool can be calculated and uploaded to the IBM Cloud for monitoring the process.   
 

 
 

Figure 3. Extracted Thermal Images. Here the colormap shows the thermal field of the melting pool during DED printing.  
 
 

Using the extracted image from the data files, the team utilizes edge detection and image segmentation techniques to 
analyze the area of the melt pool that was created during the process. This can then be uploaded to the IBM cloud and organized 
with the corresponding set of sensor data.  

When combining the sensor data graphs with the processed camera data, conclusions can be drawn about the process. 
By looking at timestamps from both the graph and video, the user can select times when abnormalities are spotted on camera 
and match them with the data received from the sensors. The collected data indicates values, whether acceleration (motion), 
force, or acoustics, that can indicate a larger melt pool area. Looking at the values in either the tables or, more likely, the graphs 
(due to a possible sampling rate that will record many data points, making the table itself challenging to read), the user can find 
values for each of the three sensor measurements that indicate something abnormal about the process. Regarding acoustics, a 
steady average level of intensity would indicate that the process is running smoothly; any erratic jumps in the acoustic emissions 
could indicate abnormalities during the process (Hauser et al., 2022). Another example of abnormalities is high vibrations 
recorded on the accelerometer that adversely affect the process, as high levels of vibration can increase porosity and melt pool 
size (Ning et al., 2020). The thermal imaging portion also plays a role in detecting anomalies. Figure 4 below shows a graph 
detailing the maximum reading from each sample data frame. The camera itself did not detect the melt pool, so anomalies 
elsewhere are examined. While a possible one was found, no conclusion could be made using the images alone. It reinforces 
the need for the other sensors to provide other data types; the user can look at the time on this image and reference it with the 
graphs. The visualized readings tell the user if something went wrong at this point during the process. 
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Figure 4. Temperature profile for entire DED Process and example frame from the process 

 
 

This real-time data collection and visualization of the thermal dynamics will promote communication between 
engineers on the in-process thermal dynamics during DED printing. The line charts plotted in real-time on the IBM cloud allow 
instant access to the monitored process. The information analyzed provides crucial insight into their manufacturing process on 
what can be causing structural defects in the finished product to support decision-making on the process--using different 
materials with higher melting points, adjusting laser intensity, using different precursors (powder vs. wire). The data from the 
thermal images also portray the thermal gradients and the evolutions of the thermal dynamics within the melting pool. 
Manufacturers can access the online data remotely via connected devices by utilizing the cloud server. This presented 
framework allows the adaption of a legacy machine into a digital CPS, which allows the manufacturer to communicate through 
online data management and visualization tools by the cloud applications. 
 
 

5. Conclusion and Future Work 
 

With the complete development of a CPS, the user will be able to effectively collect, store, communicate and visualize 
data gathered from the DED process into the IBM Cloud. This CPS will improve the process by minimizing the area of the 
melt pool, which in turn reduces structural defects. An improved DED process can lead to high productivity, effectiveness, and 
competency in the global market. This improvement of the quality of this process may lead to an increased presence in the 
manufacturing industry, as a refined process will result in greater flexibility, reduction of lead time materials being produced 
more efficiently, less waste involved, and thus a reduction in costs. With more time, much more can be added to the system, 
such as the addition of a theoretical simulation which would provide additional data that could be further used to find 
correlations in defects. With the collected data gathered, predictive modeling can be done in which a model can predict and 
analyze in real-time when defects appear within the process. Future work may also include applying the DED process being 
used in the aerospace industry, where there is an increased demand for complex, durable parts to be produced quickly and 
cheaply. 
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