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Abstract: Navy objectives for their aircraft fleet availability have become increasingly difficult to meet given the growing 

complexity of aircraft maintenance and operations. Currently, conventional preventive maintenance practices struggle to 

maintain availability levels due to fixed scheduling of engine repairs. In this paper, a condition-based predictive maintenance 

system for improving upon jet engine maintenance planning is examined. The system works by analyzing collected engine 

sensor measurements using a data-driven model to establish the remaining useful life (RUL) of each aircraft in a fleet. Paired 

with operations-based input parameters, these RUL values are processed by a mixed integer programming model to optimize 

the scheduling of engine maintenance and assignment of aircraft for deployment. In modeling both preventive and the proposed 

predictive methods, experimental results find a decrease in the number of repairs required to sustain aircraft reliability with 

predictive maintenance. These changes have shown that a predictive maintenance system can increase fleet availability while 

also decreasing total maintenance costs. 

 

Keywords: Predictive Maintenance, Condition Based Maintenance, C-MAPSS, LSTM, Scheduling Optimization 

 

 

1. Introduction 

 

1.1 Aircraft Maintenance 
 

Aircraft activities in mission-based operations cycle between 3 categories: available, in-flight, and under maintenance. 

While in operation, an aircraft engine’s moving parts will degrade, and with time will require repair. Overall, aircraft 

maintenance types are composed of pre/post flight checks, regularly scheduled line maintenance which traditionally occurs 

every 24 to 48 hours, and heavy checks with complete engine overhaul that are scheduled months and years in advance. 

The probability that an aircraft can successfully complete a mission is referred to as reliability. Reliability is calculated 

at a given time using equation 1, where λ in equation 1 is the failure rate of a given aircraft component, as calculated in equation 

2. Maintenance is required to uphold these standards and downtime is required to complete repairs. Maintenance actions are 

divided into scheduled and unscheduled maintenance, referred to as preventive and corrective maintenance, respectively. A 

significant performance measure for aircraft maintenance for flight operations is aircraft availability, calculated using equation 

3. Availability is calculated over a fleet of given aircraft and historically the peak availability for the Navy has been roughly 

80 percent within the 21st century, but has fallen below 60 percent in recent years (Congressional Budget Office, 2022). 

𝑅(𝑡) =  𝑒^(−𝜆𝑡)            (1) 

𝜆 =   (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)/(𝑡𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒)       (2) 

1 − (𝑇𝑖𝑚𝑒 𝑔𝑟𝑜𝑢𝑛𝑑𝑒𝑑/𝑢𝑛𝑑𝑒𝑟 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒)/(𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒)   (3) 

Line maintenance has been chosen for optimization, as the nature of its high frequency provides the opportunity to 

significantly reduce the amount of time an aircraft spends in maintenance. In studying turbofan engines as used by Navy jets 
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in their flight operations, this provides 5 separate engine components which must be maintained every 24 to 48 hours. These 

integral components are the fan, low- and high-pressure compressors (LPC and HPC), and low- and high-pressure turbines 

(LPT and HPT). 

 

1.2 Condition-Based Predictive Maintenance 
 

Technological advancements in sensors have created the opportunity for continuous monitoring of system health. In 

the case of aircraft engines, sensors collect readings of temperature, pressure, speed, and angle. Collected sensor measurements 

capture the performance of components where fault signatures can be identified through measurements over time. By applying 

machine learning, this sensor data can provide a window into the future of each engine component’s performance, providing 

the opportunity for maintenance planning support. This form of maintenance planning and scheduling is known as condition-

based predictive maintenance (CBPM). The key characteristic of determining an engine’s future performance is its calculated 

remaining useful life (RUL). By calculating the predicted RUL of an engine, failure thresholds can be determined and serve as 

inputs for scheduling maintenance. In comparison to preventive maintenance, which utilizes expected failure rate to correct 

potential faults, CBPM allows for exact timings based on when maintenance is required. Therefore, by reducing the amount of 

routine maintenance, CBPM reduces downtime and labor costs compared to preventive maintenance, even with considerations 

for potential unscheduled repairs (Fan, Chang, Ji, & Chen, 2021). 

For a CBPM system to be developed, a working model must be designed to serve as the basis for aircraft prognostics 

testing. A working model can be formed by employing a combination of a physics-based system model that generates data for 

utilization with a data-driven model. In order to facilitate CBPM, run-to-failure data is needed to train the machine learning 

algorithms comprising the data-driven model. However, there is a scarcity in real-world run-to-failure data due to the large 

operational costs involved with its collection (Saxena et al., 2008).  

An alternative to gathering real-world sensor data is the implementation of physics-based system models, or digital 

twins, as a method of generating simulated run-to-failure data for testing with data-driven models using machine learning 

algorithms. One digital twin used in this nature is the NASA program titled The Commercial Modular Aero-Propulsion System 

Simulation (C-MAPSS) which is a nonlinear, dynamic, component-level model of a commercial, high-bypass, dual-spool 

turbofan engine (Saxena et al., 2008; Chao et al., 2021; Liu et al. 2012). C-MAPSS allows for a variation of health parameters 

and operational condition inputs and produces an output of corresponding simulated sensor measurements. The C-MAPSS 

output sensor data can be generated as run-to-failure data for simulated engines, and this generated engine data acts as an input 

for the data-driven model. The data-driven model itself is a neural network employing machine learning algorithms. This model 

is trained with the simulated run-to-failure data from the system model, and tested with additional simulated data that is 

truncated to verify the neural network’s RUL estimation accuracy. Once the accuracy of the RULs have been verified, this 

trained machine learning algorithm can form the basis of a CBPM system by determining the optimal times for line maintenance 

actions and improving fleet availability. 

 

2. Methods 

2.1 Turbofan Engine Run-to-Failure Data Generation 

Due to the lack of access to real-world run-to-failure sensor measurements for turbofan engines, simulated run-to-

failure datasets were generated using the C-MAPSS model. C-MAPSS accepts inputs of varying turbofan engine component 

health parameters and aircraft operating conditions. To model the behavior of degradation values which serve as inputs into C-

MAPSS for generating data, the degradation equation used by Saxena et al. in the 2008 IEEE PHM C-MAPSS Dataset was 

modified by applying the normal and abnormal degradation equations utilized by Chao et al. in the 2021 N-CMAPSS Dataset. 

The final resulting equation takes the form of equations 4 through 7 (Saxena, Goebel, Simon, & Eklund, 2008). Equations 4 

and 5 model normal degradation, which is the natural linear wear and tear of an engine over its utilization. In these equations, 

an(t) is the slope, d0 is initial degradation between [0.0001, 0.009], and ε is process noise added to the generated health 

parameters values to simulate pre/post flight maintenance checks which can slightly improve or degrade the health of an engine 

component. At time ts a fault signature is introduced into the degradation model, taking the form of abnormal degradation. 

Equations 6 and 7 model abnormal degradation, which is the exponential degradation of a component once a fault has evolved 

in the engine. In these equations, a and b are degradation trajectory parameters, between [0.001, 0.003] and [0.4, 0.6], 

respectively. Equations 4 and 5 include the sum of the normal degradation as well as continued process noise. Degraded health 

parameter values are generated with equations 6 and 7 until wear thresholds are surpassed and the engine is determined to be 
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failed. Wear thresholds are determined by the user, and represent the allowable degradation of C-MAPSS virtual sensors 

exhaust gas temperature (EGT), HPC, LPC, and fan stall margins. 

𝑒_𝑛 (𝑡)  =  𝑎_𝑛 (𝑡)  +  𝑑_𝑒0 + 𝜀_𝑒    ∀ 𝑡 ≤ 𝑡_𝑠          (4) 

𝑓_𝑛 (𝑡)  =  𝑎_𝑛 (𝑡)  +  𝑑_𝑓0 + 𝜀_𝑓    ∀ 𝑡 ≤ 𝑡_𝑠         (5) 

𝑒_𝑎 (𝑡_𝑠)  =  1 −  𝑒^(𝑎_𝑒 𝑡^(𝑏_𝑒 ) ) +  𝑒_𝑛 (𝑡_𝑠) + 𝜀_𝑒          (6) 

𝑓_𝑎 (𝑡_𝑠)  =  1 −  𝑒^(𝑎_𝑓 𝑡^(𝑏_𝑓 ) ) +  𝑓_𝑛 (𝑡_𝑠) + 𝜀_𝑓        (7) 

With a modified MATLAB script, C-MAPSs was used to assign a randomly generated value to d0 , a, and b for a 

turbofan engine component, while also randomly assigning ts a value for the introduction of a fault signature. Once this was 

done, the time parameter t was increased until wear thresholds were exceeded and the output engine sensor measurements with 

each iteration of the degradation values were collected. For each single and double component failure mode this process was 

repeated 200 times; generating 100 run-to-failure engines, and 100 testing engines truncated at random points throughout their 

failure, with the RUL of testing engines collected separately. 

2.2 RUL Prediction and Fault Classification  

In order to determine the lifespan of an engine and the types of failures that will occur, a long short-term memory 

(LSTM) neural network was implemented for the data-driven model. The implemented LSTM was developed by George Mason 

University Systems Engineering and Operations Research (GMU SEOR) department PhD student Zhengyang Fan as part of 

research for the SEOR Department. The LSTM architecture uses long- and short-term memory states regulated by input, output, 

and forget gates within each cell of the neural network. Input data is split into 30 consecutive sequences with a learning rate of 

0.0015, cell dimension of 145, dropout frequency of 0.5, batch size of 50 samples, and validation split of 0.05%. The data-

driven model is trained using the C-MAPSS generated 100 run-to-failure engines which were generated using a process 

developed separately from Fan, and the LSTM neural network was tested using the 100 generated truncated engines. To 

improve the model’s ability to capture the behavior of abnormal degradation and predict when an engine will fail due to a 

component’s fault, input training sensor data was truncated using the observed time when the abnormal degradation generally 

occurs in the dataset. This process isolates the abnormal degradation of the run-to-failure data for the model to train on. 

2.3 Maintenance and Deployment Planning 

A mixed integer program was used to optimize the planning of when aircraft engines were grounded for maintenance 

and deployed on missions based on the predicted RUL of each engine’s component across a given fleet. In addition to his work 

on the LSTM code, Zhengyang Fan developed the objective function and corresponding constraints which were used in the 

development of the optimization program, and a brief overview of these constraints will briefly be given. The primary objective 

function maximizes aircraft availability over the total maintenance costs over a given planning horizon, where the number of 

aircraft required for deployment M is multiplied by the number of aircraft not currently scheduled or under maintenance over 

a given time period (1- z), and the cost of maintenance actions by failure mode F is multiplied by the number of maintenance 

actions performed over the time period (c * x). From Fan et. al (2021), constraint 2 enforces demands for aircraft to be deployed 

on a mission, constraint 3 enforces that aircraft can only perform one mission at a time, constraints 4-8 model the behavior of 

RUL, constraints 9-13 enforce that aircraft scheduled for maintenance are unavailable until maintenance is complete, 

constraints 14-16 enforce that aircraft with remaining time in maintenance are scheduled accordingly, constraints 17-19 model 

the relationship between decision variables related to the scheduling of maintenance by technician trade, component, and 

aircraft, and constraints 20-21 enforce maintenance station capacity and workforce capacity, respectively (Fan et al., 2021). 

A Python script was written which implements Gurobi Optimizer to model Fan’s objective function and constraints, 

and design the script to accept the required input parameters, RUL values, and scheduled missions (by datetime). Additionally, 

a random failure simulator was written in Python which accepts the Gurobi output and simulates the probability of engine 

components suffering a random failure after completing a mission with respect to cumulative operating time. In the event of a 

random failure occurring, the Gurobi model is rerun with the new maintenance requirements. This process is repeated until the 

full planning horizon is scheduled for mission deployment and necessary maintenance actions. 
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3. Mission Requirements 
 

Successfully applying the methods of the predictive maintenance system as described above requires certain 

characteristics and performance metrics to be met. The following high-level requirements, derived from identified stakeholder 

needs, determine what results must be met by the system for it to pass testing criteria: 

MR.1 The CBPM system shall generate simulated run-to-failure data for each single and double failure mode of a turbofan 

engine given its components: Fan, LPC, HPC, HPT, and LPT. 

MR.2   The CBPM system shall estimate the RUL for a given aircraft with a Type II error less than 10% for 100 RUL 

estimations under 50 operational flights. 

MR.3   The CBPM system shall schedule the next maintenance action for a given aircraft by datetime and type of 

maintenance required by component level. 

MR.4   The CBPM system shall identify the next maintenance actions for a given fleet of aircraft (timing and maintenance 

performed) such that the fleet level availability is at least 80% over a 72 hour period. 

 

Mission requirement 1 ensures that all primary forms of turbofan engine degradation are accounted for in degradation 

modeling and generated run-to-failure datasets. Therefore, by recreating the degradation process across the majority of failure 

modes the implemented machine learning model can be accurately trained. Accordingly, mission requirement 2 ensures that 

the machine learning output of predicted RUL values results in maintenance actions that are not performed too early ahead of 

failure and not after a failure has already occurred. The format of how these maintenance actions are represented in the 

predictive maintenance system is determined by mission requirement 3, and mission requirement 4 determines the minimum 

fleet availability over a 72-hour period. 

4. Results 

4.1 Performance Gap Analysis 

Analysis of the performance gap between preventive and predictive maintenance methods was conducted by 

simulating the optimization model with fixed parameters. Both simulated maintenance methods used the following input 

parameters: planning horizon of 7 days (168 hours), fleet size of 5 single turbofan engine aircraft, 10 maintenance technicians 

composed of two trades (airframe & powerplant, A&P; and inspection authorized, IA), and two maintenance stations. For these 

simulations, missions were generated such that there are two missions a day per aircraft between 6:00 and 18:00 hours. Each 

mission has an associated type with corresponding priority. For example, each mission type (training, surveillance, or escort) 

has an associated duration.  

Turbofan component maintenance requires different amounts of technicians to repair, however each repair regardless 

of component is simulated to require 2 hours to complete. For the preventive simulation, initial RUL for each aircraft engine 

component is known at the beginning of the planning horizon. For the preventive simulation, generated C-MAPSS run-to-

failure datasets were analyzed by component failure mode to establish the average number of operating hours at time of failure. 

Accordingly, preventive maintenance intervals were randomly assigned at 10% margins of the average failure hour for each 

aircraft engine component in the simulated fleet.  

To better understand the comparison between preventive and predictive methods, a Monte Carlo experiment was 

conducted with the resulting aircraft availability and total maintenance costs collected with each run of the simulation and 

paired random failure simulation. After 1000 simulations of the model, average availability with predictive methods were 

recorded at 92% and preventive methods were recorded at 75% for a 17% increase in aircraft availability by implementing 

predictive maintenance. Additionally, average total maintenance costs were simulated to decrease by 45%. While costs vary 

depending on the operation and available resources, this change in maintenance costs is equivalent to a decrease of 10 repairs 

across the fleet over the 7-day time period. An important feature of this comparison is that preventive method simulations begin 

to cancel lower priority missions (such as training) in order to keep aircraft maintained and able to be deployed for higher 

priority missions. Furthermore, running the simulation with increasing durations for component repairs (i.e., 2 hours, 4 hours, 

6 hours, etc.) saw the preventive method’s availability begin to decrease rapidly. Figure 1 shows how predictive methods were 

simulated to sustain availability levels as repair times increased while preventive methods struggle to support random failures 

and therefore must ground aircraft for extended periods of time until maintenance stations are free. 
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Figure 1. Aircraft Availability vs. Maintenance Duration for Preventive and Predictive Maintenance Methods 

 

4.2 RUL Prediction and Fault Classification Testing 

Verification testing of RUL prediction for the C-MAPSS generated run-to-failure datasets measured the root-mean-

square error (RMSE) of the predicted RUL output of the implemented data-driven model. In literature, an RMSE value less 

than 10% of the maximum known true RUL was considered acceptable (Zhang et al. 2018, Wu et al. 2018). Applying this 

threshold to the testing of the generated datasets and running the associated training and testing data by component failure 

mode into the LSTM data-driven model, output RMSE values were collected and can be seen in Table 1, although only single 

failure mode data testing results are included to compensate for spacing.  

Based on these tests, RUL prediction results scored acceptable RMSE values of under 10% of the maximum known 

test RUL for each of the datasets, except for flight class 1 and 2 fan datasets (Note: double failure mode datasets also scored 

similarly, with only LPC/fan datasets RMSE values above 10% of the acceptable threshold). This can be attributed to the fact 

that the fan component degrades the slowest compared to the other four turbofan components, and therefore it is common for 

data to not include significant signs of abnormal degradation in engines that do not see extensive utilization. A proposed 

solution to the issue of Fan component RUL having too high of a prediction would be a categorical labeling of the component 

which designates if abnormal degradation is recognized in the data or not. 

Further testing of the run-to-failure datasets with the data-driven model serves to verify the accuracy of the LSTM 

fault classification program. Figure 2 shows a sample output confusion matrix of the classification program, demonstrating that 

single failure mode classification tests result in accuracy greater than 90% for each turbofan component. Classification tests on 

double failure modes have proven to correctly identify the predominant (first to fail) component failure mode as the single 

failure mode classification tests, but do not identify the secondary failure mode. This behavior of the classification program 

requires real-world implementation of the predictive maintenance system to process engine sensor data frequently, so as to 

successfully keep fault classifications relevant. This resulted in the need for aircraft sensor data to be collected at frequent 

intervals such as every post-flight check or every 24 hours. 

 

Table 1. RMSE of Predicted RUL Values for Single 

Failure Mode Datasets 

 

   
 

Figure 2. Sample Confusion Matrix Results for LSTM 

Fault Classification  
 

 

 

Proceedings of the Annual General Donald R. Keith Memorial Conference 
West Point, New York, USA 
April 28, 2022 

ISBN: 97819384962-2-6 083

 
 
 
A Regional Conference of the Society for Industrial and Systems Engineering



 

 

 

4.3 Maintenance and Deployment Planning Optimization Testing 
 

Validation testing of the predictive maintenance system’s Python Gurobi optimization program tests that varying 

parameters interface correctly throughout the program and that resulting availability is acceptable across different time frames. 

For testing, simulations with varying input parameters, as listed in Methods, were run and maintenance actions were observed 

to follow accordingly. This includes simulations where available maintenance technicians supported at most two, three, and 

four maintenance actions at a time, and simulations involving one and two available maintenance stations for conducting 

repairs. 

For testing of availability given different time frames, a Monte Carlo experiment was conducted in which 1000, 72-

hour periods were simulated with a fleet of 5 aircraft similar to the Performance Gap Analysis. The resulting simulations 

returned availability levels above 80% for each simulation, thus demonstrating the successful performance of the predictive 

maintenance planning. However, given that these simulation experiments are conducted with small fleets of aircraft, further 

testing is required to examine how applicable these results are with large-scale fleet operations. The number one obstacle in 

tests involving larger fleets is the processing speed of the optimization solver and rerunning the optimization in the event of 

simulated random failures. Given classification results, processing of real-world aircraft sensor data would need to be frequent, 

and therefore would require processing speeds that would not impact the predictive systems ability to provide timely 

maintenance and deployment planning. 

 

 

5. Conclusion 
 

The overall goal of the predictive maintenance scheduling optimization model is to reduce aircraft downtime, decrease 

maintenance costs, and improve fleet availability. With the completion and testing of the proposed predictive maintenance 

scheduling process outlined within this paper, the successful deployment of this product would likely save millions of dollars 

a year for military flight command while also greatly increasing the availability of a given fleet, thus meeting the goals defined 

at the start of this project. These changes will allow for the better allocation of resources while also enabling stronger responses 

to changing threats as more aircraft will be available to respond. At the moment, all predicted results are based on the simulated 

data provided from C-MAPSS and simulated mission scheduling systems. To verify that the model will function properly in a 

real-world setting, more testing will need to be done with sensor readings of physical aircraft engines and a trial run must be 

done using a small group of planes in a low-risk environment. With the additional verification and validation of the predictive 

maintenance method in a real-world environment, the product will ideally be implemented into larger fleets to better improve 

the readiness of all aircraft within the military. Additionally, the work conducted here for aircraft engines will likely be tested 

on other mechanical systems that allow for sensors to determine when they will need maintenance and repairs as well. There 

is a strong possibility that these methods can be applied beyond only aircraft and can be used to improve maintenance processes 

for a wide variety of mechanical systems. 
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