Impact of NGATS on Unit Combat Power

Emmanuel Aka, Matthew Moffitt, Steve Lee, Sean Fallon, and Jeffrey Demarest

Department of Systems Engineering United States Military Academy, West Point, NY

Corresponding Author: sean.fallon@westpoint.edu

Author Note: Cadets Aka, Lee, Moffit, Fallon, and Mr. Jeffrey Demarest, the Capstone advisor, are working for the Program Director – Test, Measurement, and Diagnostic Equipment (PD-TMDE) as part of a capstone program with the Department of Systems Engineering.

Abstract: This study analyzes how the Next Generation Automatic Test System (NGATS) can decrease the turnaround time (TAT) in maintenance for Brigade Combat Teams (BCTs) conducting multi-domain operations by enabling fix-forward testing. Modern warfare requires complex weapon systems, making field-level electronic maintenance an essential Army function. The NGATS, a multi-platform tester, enables units to conduct field-level rather than sustainment-level maintenance on a diverse set of platforms, therefore reducing the requirement for the evacuation of equipment out of theater. This study utilizes a discrete event simulation in order to determine the effect of NGATS implementation at varying levels and locations on a BCT's TAT. The simulated TAT values are then used as inputs to a mathematical model of Combat Power—a doctrinal measure of Army readiness. Initial results show that fixing NGATS forward at the Brigade level decreases TAT and increases a unit's Combat Power.

Keywords: Next Generation Automatic Test System (NGATS), Turnaround Time (TAT), Discrete Event Simulation